كيف يسهم الذكاء الاصطناعي مفتوح المصدر في دعم التشخيص الطبي

يشهد مجال الذكاء الاصطناعي تطوراً غير مسبوق، حيث أصبحت النماذج اللغوية الكبيرة (LLMs) قادرة على أداء مهام معرفية معقدة في الطب، فمن الإجابة الدقيقة عن الأسئلة الطبية متعددة الاختيارات، إلى تقديم استدلالات سريرية متقدمة ووضع تشخيص تفاضلي للحالات الطبية المعقدة، يثبت الذكاء الاصطناعي قدرته على دعم التشخيص الطبي.
وتشير الإحصاءات إلى أن الأخطاء التشخيصية تتسبب في وفاة أو إعاقة دائمة لنحو 795 ألف مريض سنوياً في الولايات المتحدة وحدها. ومع التكاليف الباهظة الناتجة عن التشخيص الخاطئ أو المتأخر، يمكن للذكاء الاصطناعي أن يلعب دوراً حيوياً في تحسين دقة التشخيصات وتقليل الأخطاء الطبية. وخلال العامين الماضيين، تفوقت نماذج الذكاء الاصطناعي «مغلقة المصدر»، مثل (GPT - 4) من شركة «أوبن إي آي»، في تشخيص الحالات الطبية المعقدة، ما جعلها جزءاً من تطبيقات الرعاية الصحية. ورغم توفر نماذج «مفتوحة المصدر»، فإنها لم تصل بعد إلى نفس مستوى الأداء.
لكن دراسة لباحثين من كلية الطب بجامعة هارفارد الأميركية كشفت عن أن النماذج الحديثة مفتوحة المصدر، مثل (Llama 3.1) من شركة «ميتا»، يمكنها منافسة النماذج مغلقة المصدر، حيث حققت نتائج واعدة في اختبارات متقدمة. وأظهرت الدراسة أن (Llama 3.1) قدم أداءً مماثلاً لأحد أقوى النماذج المغلقة في تشخيص الحالات الطبية المعقدة، ونُشرت نتائجها بعدد 17 مارس (آذار) 2025 بدورية (JAMA Health Forum).
ويُعد (Llama 3.1) جزءاً من سلسلة نماذج (Llama) التي تطورها «ميتا» بوصفها بديلاً مفتوح المصدر، ما يتيح للباحثين استخدامها وتعديلها بحرية دون قيود تجارية. وتتميز النماذج المفتوحة بإمكانية تخصيصها وفق الاحتياجات الخاصة، مثل التدريب على بيانات داخلية دون مشاركة معلومات حساسة، بينما تبقى النماذج المغلقة احتكارية وتعمل فقط عبر خوادم الشركات.
تشخيص الأمراض
تعتمد نماذج الذكاء الاصطناعي، المفتوحة والمغلقة، على تحليل بيانات ضخمة تشمل الكتب الطبية والأبحاث وبيانات المرضى، ما يساعدها في تشخيص الأمراض مثل الأورام وفشل القلب والتهابات القولون. وعند مواجهة حالة جديدة، تقارن النماذج المعلومات الواردة بما تعلمته سابقاً لتقديم تشخيصات محتملة.
وخلال الدراسة، خضع نموذج (Llama 3.1) لاختبار شمل 70 حالة سريرية معقدة و22 حالة جديدة لضمان دقة التقييم. وحقق دقة 70 في المائة في التشخيص، متفوقاً على (GPT - 4) الذي سجل 64 في المائة، وحدد التشخيص الصحيح في محاولته الأولى بنسبة 41 في المائة مقابل 37 في المائة لـ(GPT - 4). أما في الحالات الجديدة، فقد ارتفعت دقته إلى 73 في المائة، مع تحديد التشخيص الصحيح كمقترح أول بنسبة 45 في المائة.
وقال الدكتور أرغون مانراي، الباحث الرئيسي للدراسة وأستاذ المعلوماتية الطبية الحيوية بجامعة هارفارد، إن الذكاء الاصطناعي يمكن أن يكون مساعداً موثوقاً للأطباء إذا أُدمج بحكمة في البنية التحتية الصحية.
وأضاف لـ«الشرق الأوسط» أن النماذج المفتوحة والمغلقة تختلف في الخصوصية وأمان البيانات، حيث تتيح النماذج المفتوحة تشغيلها والاحتفاظ بالبيانات داخل المستشفيات؛ ما يحافظ على سرية بيانات المرضى، بينما تتطلب النماذج المغلقة إرسال البيانات لخوادم خارجية، ما قد يثير مخاوف أمنية. كما أن النماذج المفتوحة أكثر مرونة وأقل تكلفة، مما يجعلها مناسبة للمؤسسات محدودة الموارد.
ورغم ذلك، أشار مانراي إلى تحديات تعيق تبني النماذج المفتوحة، مثل الحاجة لفريق تقني للصيانة وصعوبة تكاملها مع الأنظمة الطبية مقارنة بالمغلقة، التي توفر دعماً فنياً متكاملاً. كما أن ضمان دقتها يتطلب دراسات سريرية إضافية وتحديثات مستمرة لتحسين الأداء وتجنب التحيزات.
منصات مفتوحة المصدر
تتوفر عدة نماذج طبية مفتوحة المصدر، أبرزها منصة (Azure AI Foundry) من «مايكروسوفت»، التي توفر نماذج ذكاء اصطناعي متقدمة لتحليل الصور الطبية وإعداد تقارير الأشعة السينية. وتضم المنصة نماذج مثل (MedImageInsight) لتصنيف الصور وكشف الحالات غير الطبيعية، و(MedImageParse) لتحديد حدود الأورام والأعضاء، و(CXRReportGen) لتحليل صور الأشعة السينية وإنتاج تقارير تشخيصية تلقائياً، مما يعزز دقة التشخيص ويسرّع إعداد التقارير الطبية. كما طوّرت شركة «إنفيديا» مع جامعة كينغز كوليدج لندن منصة (MONAI) لدعم بناء وتدريب نماذج الذكاء الاصطناعي في التصوير الطبي، مع تعزيز الخصوصية ودقة التشخيص.
كما أطلق باحثو جامعة كورنيل الأميركية منصة (OpenMEDLab) في مارس 2024، لتطوير نماذج ذكاء اصطناعي متعددة الوسائط بالمجال الطبي، مستندة إلى نماذج مثل (Gemini) من «غوغل»، مما يتيح نتائج تنافسية وتشجيع الابتكار في الرعاية الصحية.
aawsat.com